Developing and validating nomograms for predicting survival in patients with pancreatic squamous cell carcinoma based upon machine learning

Huang Kun, Zhang Hui, Zhao Pan, He Yunshen

Journal of Abdominal Surgery ›› 2024, Vol. 37 ›› Issue (4) : 261-270.

PDF(3088 KB)
PDF(3088 KB)
Journal of Abdominal Surgery ›› 2024, Vol. 37 ›› Issue (4) : 261-270. DOI: 10.3969/j.issn.1003-5591.2024.04.006

Developing and validating nomograms for predicting survival in patients with pancreatic squamous cell carcinoma based upon machine learning

  • Huang Kun, Zhang Hui, Zhao Pan, He Yunshen
Author information +
History +

Abstract

Objective Pancreatic Squamous Cell Carcinoma (PSCC) has a poor prognosis and it lacks individualized prognostic tools. This study aimed to construct prognostic nomograms for PSCC patients based upon machine learning and using large-scale real-world data from the database of SEER, provide precise and individualized prognostic assessments and offer valuable references for clinical decision-making.Methods From 2000 to 2019, the relevant clinical data of 367 pathologically diagnosed PSCC patients were extracted from the database of SEER. They were randomized by a ratio of 7∶3 into training (n=256) and verification (n=111) sets. Multivariate Cox proportional hazard model, LASSO regression and random survival forest model were utilized for identifying independent prognostic factors for patient survival. These factors were utilized for constructing nomograms for predicting cancer specific survival (CSS) and total survival (OS) at Month 3/6. Subsequently, the models were internally and externally validated in training and validation sets by concordance index (C-index), receiver operating characteristic (ROC) and calibration curves for assessing their accuracy and predictive capacity.Results The median follow-up period in training and verification sets were 3(1,7) and 2(1,8) month. Baseline profiles were comparable between two groups (all P>0.05). Multivariate Cox proportional hazard model analysis indicated that tumor size, M/N stage, surgery and chemotherapy were independent influencing factors for OS/CSS. LASSO regression analysis revealed that M stage, surgery and chemotherapy were associated with OS/CSS. For OS, top four scoring variables for via random survival forest model were chemotherapy, M stage, surgery and age; For CSS, chemotherapy, M stage, surgery and tumor size. Nomograms for predicting OS/CSS at Month 3/6 were developed based upon these independent prognostic factors. Validation results showed that C-index for OS in training and verification sets were 0.753(95%CI:0.720-0.790) and 0.723(95%CI:0.660-0.780) and for CSS 0.749(95%CI:0.720-0.780) and 0.721(95%CI:0.660-0.780). ROC curve analysis indicated that AUC values for OS in training and verification sets were 79.8% and 75.9% at Month 3, 78.9% and 76.8% at Month 6 and 78.7% and 77.5% at Month 12; for CSS, 79.3% and 76.3% at Month 3, 78.6% and 76.9% at Month 6 and 77.4% and 78.4% at Month 12 respectively. Calibration curve analysis demonstrated a decent agreement between predicted and actual OS/CSS. Both were closely situated near ideal 45° reference line, demonstrating a high consistency.Conclusion Age, M stage, tumor size, surgery and chemotherapy are independent prognostic factors for PSCC patients. And the above constructed nomogram prediction models exhibit favorable predictive value and facilitate personalized therapeutics for PSCC patients in clinical practices.

Key words

Pancreatic neoplasms / Carcinoma / Squamous cell / Nomogram / Prognosis / SEER

Cite this article

Download Citations
Huang Kun, Zhang Hui, Zhao Pan, He Yunshen. Developing and validating nomograms for predicting survival in patients with pancreatic squamous cell carcinoma based upon machine learning[J]. Journal of Abdominal Surgery, 2024, 37(4): 261-270 https://doi.org/10.3969/j.issn.1003-5591.2024.04.006

References

[1] 王健力,俞泽元,陈志涛,等.TRIM21与胰腺癌临床病理特征及免疫浸润的相关性分析[J].重庆医科大学学报,2022,47(2):201-208. DOI:10.13406/j.cnki.cyxb.002737.
[2] Timmer FEF,Geboers B,Nieuwenhuizen S,et al.Locoregional treatment of metastatic pancreatic cancer utilizing resection,ablation and embolization:a systematic review[J].Cancers,2021,13(7):1608. DOI:10.3390/cancers13071608.
[3] Zhou WT,Wang DS,Lou WH.Current role of surgery in pancreatic cancer with synchronous liver metastasis[J].Cancer Control,2020,27(1):1073274820976593. DOI:10.1177/1073274820976593.
[4] Siegel RL,Miller KD,Jemal A.Cancer statistics,2016[J].CA Cancer J Clin,2016,66(1):7-30. DOI:10.3322/caac.21332.
[5] 肖文博,朱广涵,朱云,等.1990-2019年中国主要消化系统恶性肿瘤发病变化分析[J].中国肿瘤,2022,31(9):693-700. DOI: 10.11735/j.issn.1004-0242.2022.09.A003.
[6] 张敏,段朝晖,徐杰茹,等.基于GBD数据分析与预测2000—2030年中国胰腺癌发病与死亡趋势[J].中国肿瘤,2022,31(11):862-868. DOI:10.11735/j.issn.1004-0242.2022.11.A003.
[7] Luo GP,Fan ZY,Gong YT,et al.Characteristics and outcomes of pancreatic cancer by histological subtypes[J].Pancreas,2019,48(6):817-822. DOI:10.1097/MPA.0000000000001338.
[8] 黎美青,张永俊,刘争进.胰腺原发性透明细胞鳞状细胞癌一例[J].中华病理学杂志,2021,50(10):1186-1188. DOI:10.3760/cma.j.cn112151-20210722-00524.
[9] Chen MS,Liu PC,Yi JZ,et al.Development and validation of nomograms for predicting survival in patients with de novo metastatic triple-negative breast cancer[J].Sci Rep,2022,12(1):14659. DOI:10.1038/s41598-022-18727-2.
[10] Huang C,Yu QP,Li H,et al.A novel nomogram model to predict the overall survival of patients with retroperitoneal leiomyosarcoma:a large cohort retrospective study[J].Sci Rep,2022,12(1):11851. DOI:10.1038/s41598-022-16055-z.
[11] Zhang SL,Wang ZM,Wang WR,et al.Novel nomograms individually predict the survival of patients with soft tissue sarcomas after surgery[J].Cancer Manag Res,2019,11:3215-3225. DOI:10.2147/CMAR.S195123.
[12] Wang W,Hong JQ,Meng JH,et al.Nomograms predict cancer-specific and overall survival of patients with primary limb leiomyosarcoma[J].J Orthop Res,2019,37(7):1649-1657. DOI:10.1002/jor.24298.
[13] 刘红枝,林海涛,林昭旺,等.机器学习算法在肝细胞癌微血管侵犯术前预测中的应用价值[J].中华消化外科杂志,2020,19(2):156-165. DOI:10.3760/cma.j.issn.1673-9752.2020.02.008.
[14] 黄坤,赵平武,白斗,等.不同病理学类型的腹膜后脂肪肉瘤患者的预后分析及临床评价[J].中国普通外科杂志,2021,30(10):1212-1228. DOI:10.7659/j.issn.1005-6947.2021.10.011.
[15] 陈茂山,李芳芳,杨宏伟,等.基于SEER数据库分析142007例乳腺癌诊断时婚姻状态与预后的关系[J].重庆医科大学学报,2020,45(11):1567-1572. DOI:10.13406/j.cnki.cyxb.002325.
[16] 黄坤,赵平武,白斗,等.不同病理学类型的腹膜后脂肪肉瘤患者的预后分析及临床评价[J].中国普通外科杂志,2021,7(10):1212-1228. DOI:10.7659/j.issn.1005-6947.2021.10.011.
[17] 黄坤,何运胜,张红梅,等.手术治疗对胆囊小细胞癌患者预后价值的SEER数据库分析[J].中国普通外科杂志,2022,8(8):997-1005. DOI:10.7659/j.issn.1005-6947.2022.08.002.
[18] 刘千琳,李秋.肝细胞癌靶向治疗联合免疫治疗的研究剖析[J].中国普外基础与临床杂志,2023,30(4):392-396. DOI: 10.7507/1007-9424.202303055.
[19] 黄坤,何运胜,赵攀,等.手术治疗对直肠小细胞神经内分泌癌患者预后影响的SEER数据库分析[J].中国普外基础与临床杂志,2023,30(2):179-184. DOI: 10.7507/1007-9424.202208041.
[20] 程杨,陈小彬,魏志鸿,等.术前淋巴细胞与C反应蛋白比值在预测胆囊癌术后复发中的应用及其临床价值[J].中国普通外科杂志,2023,32(2):190-199. DOI:10.7659/j.issn.1005-6947.2023.02.004.
[21] 王晓晓,陶立元,裴敏玥,等.连续变量转换为分类变量的几种方法[J].中华儿科杂志,2022,60(5):420. DOI:10.3760/cma.j.cn112140-20220317-00212.
[22] 黄坤,何运胜,张红梅,等.手术治疗对胆囊小细胞癌患者预后价值的SEER数据库分析[J].中国普通外科杂志,2022,31(8):997-1005. DOI:10.7659/j.issn.1005-6947.2022.08.002.
[23] Su BB,Bai DS,Yu JQ,et al.Can patients with pancreatic cancer and liver metastases obtain survival benefit from surgery?A population-based study[J].J Cancer,2021,12(2):539-552. DOI:10.7150/jca.51218.
[24] Pu N,Chen QD,Gan W,et al.Lymph node metastatic patterns and survival predictors based on tumor size in pancreatic ductal adenocarcinoma[J].Adv Ther,2021,38(8):4258-4270. DOI:10.1007/s12325-021-01819-2.
[25] 陈茂山,李芳芳,杨宏伟,等.基于SEER数据库分析142007乳腺癌诊断时婚姻状态与预后的关系[J].2020,45(11):1567-1572. DOI: 10.13406/j.cnki.cyxb.002325.
[26] Kim Y,Margonis GA,Prescott JD,et al.Nomograms to predict recurrence-free and overall survival after curative resection of adrenocortical carcinoma[J].JAMA Surg,2016,151(4):365-373. DOI:10.1001/jamasurg.2015.4516.
[27] 陈哲,许恒敏,李哲轩,等.随机生存森林:基于机器学习算法的生存分析模型[J].中华预防医学杂志,2021,55(1):104-109. DOI:10.3760/cma.j.cn112150-20200911-01197.
[28] Wang YQ,Zhou YW,Chen YY,et al.Epidemiology,treatment,and outcome of pancreatic squamous cell carcinoma and pancreatic adenocarcinoma:a propensity score-matching analysis based on SEER-database[J].Technol Cancer Res Treat,2022,21:15330338221106533. DOI:10.1177/15330338221106533.
[29] Makarova-Rusher OV,Ulahannan S,Greten TF,et al.Pancreatic squamous cell carcinoma:a population-based study of epidemiology,clinicopathologic characteristics and outcomes[J].Pancreas,2016,45(10):1432-1437. DOI:10.1097/MPA.0000000000000658.
[30] 江珍珍,刘夏天,侯传玲.胰腺原发性鳞状细胞癌一例[J].中华胰腺病杂志,2018,18(2):127. DOI:10.3760/cma.j.issn.1674-1935.2018.02.018.
[31] 何睿哲,付学良,刘德军,等.胰腺鳞状细胞癌一例[J].中华普通外科杂志,2018,33(9):741. DOI:10.3760/cma.j.issn.1007-631X.2018.09.008.
[32] 金圣博,丁雪丽,于亚男,等.化疗联合经皮肝动脉化疗栓塞术治疗胰腺鳞状细胞癌并肝转移一例[J].中华医学杂志,2019,99(46):3667-3668. DOI:10.3760/cma.j.issn.0376-2491.2019.46.015.
[33] Qin WX,Wu Y,Liu J,et al.Primary squamous cell carcinoma of pancreas:a population-based study[J].Gland Surg,2021,10(3):1029-1037. DOI:10.21037/gs-20-317.
[34] Xu L,Wen N,Qiu JJ,et al.Predicting survival benefit of sparing sentinel lymph node biopsy in low-risk elderly patients with early breast cancer:a population-based analysis[J].Front Oncol,2020,10:1718. DOI:10.3389/fonc.2020.01718.
[35] Xiang JX,Zhang XF,Weiss M,et al.Multi-institutional development and external validation of a nomogram predicting recurrence after curative liver resection for neuroendocrine liver metastasis[J].Ann Surg Oncol,2020,27(10):3717-3726. DOI:10.1245/s10434-020-08620-5.
[36] 程晨,吴云桦,徐正水,等.Ⅱ~Ⅲ期结肠癌根治术后复发危险因素分析及其列线图预测模型的应用价值[J].中华消化外科杂志,2021,20(3):331-338. DOI:10.3760/cma.j.cn115610-20210120-00034.
[37] 邓家仲,荚卫东.肝细胞癌微血管侵犯危险因素分析及术前预测列线图模型构建[J].中国普通外科杂志,2021,30(7):772-779. DOI:10.7659/j.issn.1005-6947.2021.07.003.
[38] 李吴寒,张营,潘晶晶,等.胃癌患者预后相关影响因素的列线图模型构建及验证[J].中国普通外科杂志,2022,31(10):1381-1388. DOI:10.7659/j.issn.1005-6947.2022.10.014.
[39] Peng F,Qin TT,Wang M,et al.Development and validation of a nomogram to predict survival in pancreatic head ductal adenocarcinoma after pancreaticoduodenectomy[J].Front Oncol,2021,11:734673. DOI:10.3389/fonc.2021.734673.
PDF(3088 KB)

174

Accesses

0

Citation

Detail

Sections
Recommended

/